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Abstract-This paper describes the fundamentals of the heat transfer melting process occurring in the 
narrow rolling contact region between a body of phase-change material and a solid body that acts as a 
heater. The theory is based on the following assumptions : (i) the phase-change material is at the melting 
point temperature, (ii) the surface of the solid is isothermal, (iii) the effect of frictional heating in the liquid 
gap is negligible, (iv) the peripheral length of the liquid region is much smaller than the radius of the roller, 
(v) the liquid gap region is slender, and (vi) the effect of surface tension is negligible. The general solution 
constructed in this manner relates the mechanical loading of the roller (normal force, tangential force, 
applied torque) to the angular speed of the roller, the temperature difference between the heater and the 
phase-change material and the thermophysical properties of the liquid phase. Simpler calculation pro- 
cedures are developed for two special applications : (a) the melting of a cylinder mounted freely on its axle, 

and (b) the melting of a turning cylinder the axle of which is stationary relative to the heater surface. 

1. INTRODUCTION 

THE SUBECT of this paper is the thin-film melting 
process that occurs in the narrow strip contact 
between a solid cylinder rolling on a flat substrate at 
a different temperature. The solid part that melts will 
be referred to as the ‘phase-change material’, and the 
warmer solid part that does not melt will be referred 
to as the ‘heater’. Figure 1 shows the two con- 
figurations in which the problem can be attacked. In 
Fig. 1 (a) a cylinder of phase-change material is shown 
rolling on the heater surface and leaving a film of 
liquid on this surface. In Fig. l(b) the roles are 
reversed, as the position of the roller is occupied now 
by the heater and the position of the base by the phase- 
change material. In this second configuration the end 
result is the same-a liquid film on the base surface, 
in the wake of the roller. 

The analyst is free to choose between Figs. 1 (a) and 
(b) as frameworks in which to construct a theoretical 
argument. The analysis reported in this paper happens 
to be constructed with reference to Fig. 1 (a). In both 
configurations the engineering challenge is the same, 
namely, to calculate the melting rate of the phase- 
change material when told the temperature difference 

phase-change 

material 

solid heater 

a 

and the forces that are maintained between the two 
solid parts. 

The present phase-change heat transfer phenom- 
enon is related to the classical problem of rolling con- 
tact with liquid film lubrication. A chronological list- 
ing of representative publications in this classical area 
is given in refs. [l-9]. In the classical rolling contact 
lubrication problem the shape of the liquid-filled gap 
is known from the start, as it is fixed by the shape of 
the roller itself. The problem addressed in this paper 
is both tougher and more interesting, because the 
liquid gap shape and size depend not only on the heat 
transfer rate but also on the mechanical loading of 
the cylinder. It is shown in Fig. 2 that the loading is 
represented in general by three quantities, the normal 
force F,,, the tangential force i;, and the torque M. 

2. THE LIQUID GAP SHAPE 

Consider the two-dimensional configuration sket- 
ched in Fig. 2, in which a horizontal cylinder of phase- 
change material rolls with a known angular speed 
along the flat surface of the heater. In a Cartesian 
system of coordinates (x, JJ) attached to the base 

“) solid heater 

phase-change material 

b 

FIG. 1. Two possible configurations for the process of melting by rolling contact. 
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NOMENCLATURE 

B characteristic dimensionless heat T, melting point temperature 
transfer parameter of the rolling contact TS temperature of the heater (base) surface 
melting problem, equation (24) u longitudinal velocity 

&in dimensionless viscosity parameter, u slip speed 
equation (58) 0 dimensionless slip speed parameter, 

C specific heat equation (18) 3 

i,r, 
constant, equation (17) V vertical velocity 
functions, equations (56) and (57) V melting speed, equation (1) 

F, normal force [N m- ‘1 v* dimensionless melting speed parameter, 
F”* dimensionless normal force, equation equation (25) 

(23) X>Y longitudinal and transversal coordinates, 
F, tangential force, equation (30) Fig. 2 

F,* dimensionless tangential force, equation X, Y dimensionless parameters, 1 + 1, 1 -i, 

(31) respectively. 
h liquid gap thickness 
Ah difference between the exit and entrance Greek symbols 

liquid gap thickness thermal diffusivity of liquid 
h sf latent heat of fusion 9 dimensionless parameter, wL/ V 
k thermal conductivity of liquid Ir viscosity 
K,, K2 constants, equations (20) 5 dimensionless longitudinal coordinate, 
L half-length of liquid gap equation (18) , 
M applied clockwise torque, equation (33) density of liquid 

M* dimensionless torque, equation (35) L function shown on the right-hand side of 
P pressure equation (22) 
P dimensionless pressure group, equation function defined in equation (36) 

(18), 2 function shown on the right-hand side of 

4 heat transfer interaction per unit area equation (32) 
[Jm-*] CD viscous dissipation function, equation (2) 

Q height integrated flow rate, fi u dY @‘n function defined in equation (45) 
r cylinder radius @t function defined in equation (46) 
t time ti function, equation (37) 
T temperature Y function, equation (38) 
AT temperature difference w angular speed. 

surface and the center of the cylinder cross-section, a The ‘melting’ speed V is the chief unknown of the 
solid base is shown moving to the left and a ‘station- problem. This and the other unknowns represented 
ary’ cylinder rotating clockwise with angular by the forces that must be applied on the melting 
speed w. Actually, in this frame the cylinder axis is cylinder in order to roll it with speed o can only be 
not truly stationary, as it descends slowly with the determined by focusing on the liquid film created by 
instantaneous vertical speed melting in the thin gap of height h(x). This gap has 

been expanded for better viewing in the right half of 

y= -cc. 
dt 

\ 
Ft la- M 

x 

(1) 
Fig. 2. 

In order to isolate the rolling contact melting 

TS 

FIG. 2. Mechanical loading and system of coordinates. 
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phenomenon from other heat transfer processes that 
might be present in the same configuration (e.g. con- 
duction in the two solid parts), consider the case where 
the phase-change cylinder is at its melting point (T,) 
while the flat solid base is isothermal and at a higher 
temperature (T,), i.e. AT =i Ts - T,,, 3 0. 

The conservation of energy at every point in the 
liquid gap is accounted for by writing 

where Cg is the viscous dissipation function and (ar, p, 
p, c) the liquid properties defined in the Nomencla- 
ture. A total of four scales compete in the energy 
balance represented by equation (2), namely, (i) the 
convection effect (the left-hand side of the equation), 
(ii) the effect of longitudinal conduction, (iii) the effect 
of transversal conduction and (iv) the volumetric fric- 
tional heating effect 

(3) 

The analysis that follows is based on the important 
ass~ption that the dominating effect in the energy 
balance (2) is that of transversal conduction, This 
assumption is equivalent to assuming three things sim- 
ultaneously, first, negligible convection relative to 
transversal conduction 

uwh2 --- 
UL 

<< 1 

second, negligible longitudinal conduction 

h 

E 
<< 1 

and, third, negligible frictional heat generation 

At this point one relies on assumptions (4)-(6) in 
order to simplify equation (2) to the statement that 
the temperature distribution across the liquid-filled 
gap is linear. Integrated subject to the boundary con- 
ditions T(y = 0) = T, and T(y = h) = T,,,, equation 
(2) yields the temperature profile 

T= T,+AT 

As in other phase-change heat transfer problems, 
the position of the two-phase interface is fixed by the 
energy balance at the interface, which in this case 
reads 

= p&C-z&,,. (8) 

In this equation (-U& represents the downward 
velocity with which the melt enters the liquid region 

of height h and known length 2L. By considering 
the geometry and kinematics of the rolling cylinder it 
is easy to show that if the liquid gap is short when 
compared with the cylinder radius 

L 
-<< 1 

the downward velocity with which the solid phase- 
change material approaches the interface is (V+wx). 
The conservation of mass across the interface requires 
then 

(-zi),,h = v+cox (IO) 

where it has been assumed that the densities of the 
liquid and solid phases of the phase-change material 
are practically equal. Combining equations (7), (8) 
and (10) one obtains 

h(x) = 
kAT 

ph&‘+W’ 
(11) 

This result shows that the gap height decreases 
monotonically as x increases, that is, towards the 
‘entrance’ to the rolling contact region. This feature 
has been sketched already in Fig. 2 (the act-hand 
side). 

3. THE NORMAL FORCE 

Next, attention is turned to the manner in which 
the flow of the liquid film through the gap provides 
the pressure build-up necessary for supporting the 
normal forces applied on the cylinder axis. One begins 
with the classical simplified momentim equation of 
thin-film lubrication theory (see, e.g. Batchelor [IO]) 

a211 1 dP 
2=-- 
8Y P dx 

which is based on the assumptions of negligible longi- 
tudinal inertia and that of a slender enough liquid 
domain. Note that the latter has been assumed already 
in writing equation (5). Integrating now equation (12) 
subject to the rolling velocity conditions, u(h) = -cur 
and u(O) = - wr - U, one obtains 

u-t g y(y-h)-mr+U f-l 
0 ( 1 

. (13) 

In this velocity profile expression Urepresents the ‘slip 
speed’, that is, the relative speed between the roller 
and the base.This terminology means that relative to 
the base the cylinder axis moves in the direction of F, 
with speed (wr + U), while the lowest point of the 
cylinder slides in the same direction with speed U. 

A more useful quantity is the height-integrated flow 
rate Q(X) (see Nomenclature), which, in view of equa- 
tion (13), means 

It3 dP 
Q= _--+,,.-!!! 

12pdX 2’ (14) 
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A second equation for Q follows from the mass con- 
tinuity equation for the liquid gap 

!!!!+!!u=O 
ax ay (15) 

which, integrated first from y = 0 to h, and later in x, 
yields 

Q = -wrh+ Vx+ $x’+constant. (16) 

The integration in the y-direction is based on invoking 
boundary condition (10) at y = h, the impermeable 
base condition v = 0 at y = 0, and Leibnitz’ formula 
for differentiation under the integral sign, while keep- 
ing in mind that h is a function of x. 

Eliminating the flow rate Q(x) between equations 
(14) and (16) one obtains an expression for the pres- 
sure gradient along the liquid filled gap 

1 dP” 

12 d5 
_c(1+5)3_g 

(1+5)‘-$1+@ 

(17) 

where 

wkAT 
and i?= c’------ 

p&P3 

(18) 

The undetermined constant C appearing in equation 
(17) is proportional to the constant introduced in 
equation ( 16). Integrating equation (17) one obtains 

P(l) = K,(1+5)4-(1+5)6-20(1 +5)3+K, (19) 

in which K, accounts for the constant C, and where 
K2 is a new constant. 

Regarding now the pressure P as the difference 
between the liquid pressure and the background pres- 
sure of the surroundings, constants K, and Kz can be 
determined by setting P”(l) = 0 = P”( --A). In other 
words, the effect of surface tension is assumed to be 
negligible. One obtains 

K 
I 

_ X6- Y6f20(X3- Y3) 
x4- Y4 

and 

K =~(1-a*)4+0(1-a2)~ (20) 
2 2(1 +k2) 

where i is the dimensionless group i = CDL/V, and 
whereX= 1+1and Y= 1-I. 

The pressure integral must equal the net downward 
force F,,, which is one of the quantities that must be 
specified in the problem statement 

s 

L 
F, = P dx. (21) 

- 1. 

Performing integral (21) one obtains 

Fn.$ = ;K,(X’- Y5)- +(X7- Y7) 
* 

- y (X” - Y “) + 2iK, (22) 

where F,,* is the dimensionless notation for the known 
normal force 

(23) 

This formulation reveals also an entirely new dimen- 
sionless group, B, which is the characteristic heat 
transfer parameter of the rolling melting process 

kAT B = -.--i, 
ph,fwr- 

(24) 

Finally, the dimensionless parameter V, accounts for 
the unknown melting speed 

v 
* 

= ~c-. 
w 

(25) 

It is important to note at this juncture that B, V* 

and i are related through a purely kinematic 
constraint. This relation is based on the observation 
that the positive gap height difference Ah = h( - L) 

-h(L) is related to the downward movement of the 
center of the cylinder. Indeed, one can view the 
rolling contact region (the liquid gap) as a cutting 
tool that removes steadily a solid ‘chip’ of radial 
thickness Ah. It follows that the center of the cyl- 
inder travels a distance Ah toward the base plane 
during one revolution, that is, Ah = 2nV/w. Evalu- 
ating Ah by using equation (1 I), it is easy to show 
that this kinematic condition is 

B 
-i- =T(l-Jo’), 
v; r. 

(26) 

The parameter i can be written alternatively as 

L A=-” 

“* 
(27) 

where L, is the dimensionless half length of the liquid 

gap 

L, = J-. (28) 
r 

Note that according to assumption (9) this dimen- 
sionless length must be smaller than one, in other 
words 

L,c I oriV*cc I. (29) 

4. THE TANGENTIAL FORCE 

The F, force that pushes the cylinder axis from 
left to right in Fig. 2 must be balanced by the total 
horizontal shear force felt by the same cylinder over 
the wet spot 

F, = dx 
,,--I, 

(30) 
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-0.02 -0.01 0 0.01 0.02 x/r 

FIG. 3. The pressure distribution in the liquid gap formed by a cylinder mounted freely on its axle, and 
the corresponding liquid gap shape (5 = 10m5) : (a) F,,. = 464.5 (or 8 = - 1) ; (b) F.. = 5532 (or 0 = 0) ; 

(c)&=20168(orO=l). 

The resulting expression for the dimensionless tan- The rotational equilibrium condition that accounts 
gential force for all these effects is 

L 
(31) M+F,r = 

s 
XP dx. 

--L 
can be summarized as follows : 

In view of equations (31) and (19), 
means 

- 8(X’- Y’). (32) 

5. THE ROTATIONAL EQUILIBRIUM 
CONDITION 

The roller may be driven in general by a com- 
bination of translational push (F,) and the turning 
of the roller around its axis. The latter requires the 
application of the torque M, which in Fig. 2 is defined 
positive when pointing in the clockwise direction. If 
the rolling process is to proceed with zero angular 
acceleration, the torque M must always be balanced 
by the other effects that tend to turn the roller. One 
such effect is the moment rF,, which acts in the clock- 
wise direction. Another effect is the moment due to 
the pressure excess in the liquid gap, because, in 
general, the F, resultant of this pressure distribution 
does not fall precisely on the vertical line that passes 
through the center of the roller cross-section (Fig. 3). 

(33) 

this condition 

(34) 

in which M, is the dimensionless applied torque 

M 
M,=7 

wr 
(35) 

and the function &,(A, 0) is shorthand for 

&,<A, 0) = :(x6 - Y6) - $(X” - Y8) 

-~~(x’-Ys)+~(X’-Y+$.(l,O). (36) 

The additional function $,,(l, 8) is shorthand 
notation for the entire right-hand side of equation 

(22). 
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6. ANALYTICAL SUMMARY 

The analytical eon~lusions reached in the preceding 
four sections constitute a sufficient set for determining 
the melting speed Vwhen ‘accessible’ parameters such 
as F,, F,, M, AT and the geometric and thermo- 
physical properties are specified. Worth noting is that 
the angular speed o is also an unknown, because it 
cannot be specified if F,, F,, M, AT and all the prop- 
erties are already known. The same can be said about 
the slip speed U. 

It pays to review the unknowns of the problem vis- 
ri-ofs the chief analytical results that have been 
developed so far. There are four equations, namely, 
equations (22), (26), (32) and (34), which relate seven 
dimensionless parameters, F,,, F,,, M,, 3, A, 0, and 
V,. One could, in principle, eliminate three of these 
parameters (say, i,, CT and V,) between the four equa- 
tions, leaving in the end a single equation of the form 

$(F,+ F,+, M,, B) = 0. (37) 

However, in view of the definitions of the four sur- 
viving dimensionless parameters, this single equation 
is equivalent to 

Y(F,,, F,, M, AT, w, properties) = 0. (38) 

This last form illustrates the physical argument made 
in the preceding paragraph, namely, that one cannot 
specify w independently of the mechanical loading 
(F,, E;, M) and the heat transfer configuration (AT, 
properties). 

Going back to the dimensionless form (37), one can 
conclude that one has the freedom to select as many 
as three dimensionless parameters inde~ndently. Any 
dimensionless unknown (e.g. V.J is in general a func- 
tion of three independent parameters. One can see 
that with a little ingen~ty (Section 8) one will be 
able to condense the solution to this three-degrees-of- 
freedom problem into a set of two-dimensional charts. 

7. CYLINDER MOUNTED FREELY ON ITS AXLE 

A very simple construction of the “melting by roll- 
ing’ apparatus sketched in Fig. 2 consists of a roller 
that is mounted freely on an axle. In this case M 
remains equal to zero as the cylinder rolls along the 
flat substrate solely under the influence of the trans- 
lational push F, and the normal force F,. 

Reviewing the preceding analysis one can see that 
the M, = 0 condition affects only equation (34), 
which now reads 

(39) 

The new function #,(A, 8) is shorthand notation for 
the expression shown on the right-hand side of equa- 
tion (32). With M, being now fixed, the problem is 
left with only two degrees of freedom. These are 
represented best by the parameters 1 and 0, which can 
be selected at will and substituted on the right-hand 

side of each of equations (22), (26), (32) and (39). For 
each (2, 0’) pair one can solve this system of four 
equations and calculate V,, B, F,,*, and F,*. 

The solution was accomplished numerically by first 
combining equations (26) and (39) and solving for V, 
and B. With these new values (plus the assumed j_ and 
0) one proceeds to equation (22) in order to calculate 
F,+ and, finally, to equation (32) in order to determine 
F,*. Some of the results of this operation are presented 
in Figs. 3-5. 

Figures 3 and 4 illustrate the liquid gap shape and 
the distributions of pressure and longitudinal velocity 
in the gap. All the curves are drawn for cases along 
the constant-B ‘isotherm’ B = 10” ’ of the surface 
(37). The pressure increases steadily as the normal 
force increases. At the same time the length of the 
liquid gap increases. The pressure is considerably 
higher along the upstream half of the gap: this dis- 
tribution is responsible for the counterclockwise 
moment recognized in equation (33). Thinking of the 
roller as a whole, one may say that the roller ‘walks 
on its toes’. 

Immediately below the longitudinal pressure pro- 
files one can see the corresponding shapes of the liquid 
gap region. These shapes are drawn to scale (note 
the use of the roller radius as length unit in both 
the horizontal and the vertical directions). The liquid 
gap becomes increasingiy slender as the normal force 
increases. Worth noting is that the B = IO ’ case 
illustrated here is close to the limit of the least slender 
(most robust) gaps for which numerical solutions 
could be obtained. This case was chosen for the pur- 
pose of illustration, because infinitely slender gaps are 
more difficult to draw (and see?) than a gap the height 
of which is comparable with its length. The liquid 
gap shapes become more slender as the normal force 
increases. 

Figure 4 shows the longitudinal velocity profiles 
that correspond to the curves presented in Fig. 3. The 
velocity profiles are drawn at two longitudinal 
stations, namely, in the vertical plane that passes 
through the center of the roller, < = 0, and in the plane 
of the gap entrance, f = i. These two stations contain 
between them the region of maximum pressure (Fig. 
3(top)) : this explains the opposing curvatures of the 
two sets of profiles. Note also that the longitudinal 
velocities increase as the normal force (or tangential 
force) increases. At the same time the slip speed 
between the bottom and top walls of the liquid gap 
increases. 

8. PRESENTATION OF THE RESULTS IN THE 

LIMIT %+ 1 

One of the simplifying assumptions on which the 
preceding theory was based, equation (9) or equation 
(29), requires that the order of magnitude of nk’.+ be 
less than one. Another assumption is that the liquid 
gap is a slender space, equation (5) 
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-3 -2 -1 0- -2 -1 0 
u/(mr) u/(or) 

FIG. 4. Longitudinal velocity profiles for cases (a j(c) described in the caption of Fig. 3. 

LB<<, 
L nvz, . w 

The numerical solutions described in the preceding 
section were generated by varying 1 and 0 inde- 
pendently. The effect of 1 and 0 on the two ‘slen- 
derness’ criteria recognized above is presented in Fig. 
5. The permissible (1, 8) domain shrinks as one con- 
venes on increasingly stricter (smaller) threshold 
values for the scales of 1 V, and B/(n I”,). The numeri- 
cal solution (omitted here) showed that the highest B 
order of magnitude for which the solution respects 
both criteria is 10e4. 

The useful aspect of Fig. 5 is that it demonstrates 
that the M, = 0 solution of Figs. 3 and 4 positions 
itself in the limit Iz + 1. In this limit the problem loses 
one of its degrees of freedom, which means that equa- 
tion (37) can be represented by a single curve in a 
plane. The physical meaning of this limit can be seen 
by rewriting equation (11) as 

l-b __ 

I 
I 
, 

.A_=1 -.-.-.-.-.-.__i.-.-.- 

XV2 I 
I 
! 
I 

0.1 -- : 
\ 
, 
, 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ 

\ \ 
\,liV,=l 

\ 
O.l_._._. -.- .__. +.- ‘\ 

\ 
-. 

I 0 
.&IL’ ‘\ 

--_a ‘\ 

-5 0 5 
D 

FIG. 5. The (A, 0) domain of validity of the numerical 
solution sampled in Figs. 3 and 4. 

kAT 
W) = ph,,V(l +t) 

in which (I+ r) varies from 1 + I r 2 at the liquid 
gap entrance to 1 -I << 1 at the exit. In conclusion, 
although in the 1+ 1 limit the liquid gap is remark- 
ably slender (Fig. 5), the exit cross-section flares out 
to a height that is considerably larger than the average 
height of the liquid gap region. 

Subjecting the M, = 0 problem of the previous sec- 
tion to the calculus of limits, for the limit Iz + 1 one 
obtains 

(4.4) 

(42) 

(43) 

These equations replace, in order, equations (22), (32) 
and (39). The lone degree of freedom in this limit is 
represented by 0 or, according to equation (44), the 
new group Vt/B. Note that the left-hand side of equa- 
tion (42) can be rewritten as F,. B 213 (B/V:) ‘I’. Taken 
together, equations (42) and (44) state that 

F,,.B”’ = D 
” (45) 

After a similar manipulation, equations (43) and (44) 
combine into 

(46) 

By varying Vi/B in equations (45) and (46) one 
can obtain a unique curve in the new plane F,,.B2/‘- 
F,.B’/‘. This result is shown in Fig. 6. Plotted along 
this curve is the value of the parameter VJB I”. Along 
the dashed-line portion of the solution the system 
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FIG. 6. 

104 10-I 1 10 102 103 

FtxB’13 

Single-curve solution for the rolling contact melting of a cylinder mounted freely 

promises to be mechanically unstable : for example, at 
constant B, the melting speed increases as the normal 
force decreases. 

Compared with the three-parameter chart that can be 
drawn based on equation (37) with M, = 0, the 
asymptotic ‘correlation’ of Fig. 6 makes it easier to 
predict unknowns such as the angular speed (0) and 
slip speed (U) when F,, F,, AT and the properties are 
specified. In fact, all that is needed for calculating 
w analytically is a power-law approximation of the 
solid-line portion of the curve. For example, the 
Vi/B + 0 asymptote of this curve is represented by 

(47) 

or, after eliminating Vi/B, by 

F;!‘F,: ’ B 3/7 -+ 3.2564. (49) 

Recalling finally the definitions of the dimensionless 
parameters, expression (49) provides a formula for 
relating o to the physical quantities that can be speci- 
fied in the problem statement 

w -+ 0.1267(;~7’4~)l(,$$)? (50) 

More accurate estimates for w can be made by using 
in place of equations (47)-(49) the power-law 
approximation of the appropriate segment of the 
solid-line curve on which the operating point (or the 
Vi/B value) falls. 

Another result that is hidden in the solution dis- 
played in Figs. 3-6 is the size of the slip speed U. 
This is, of course, proportional to the dimensionless 
parameter 8. It is easy to show that the ratio between 
the slip speed and the peripheral speed of the roller is 

-=&. .!I 

wr B 

In view of equation (44), the U/(W) ratio emerges as 

on its axle. 

a function of the same lone parameter V’,/B on which 
the single-curve correlation of Fig. 6 is based. 

Figure 7 shows the manner in which U/(W) varies 
with the abscissa parameter of Fig. 6. The slip speed 
increases well above wr as the abscissa parameter 
F,.B’13 as well as the group Vi/B assume values that 
are greater than one. In the opposite extreme the slip 
speed is, in relative terms, negligible. As shown in 
the enlarged detail of Fig. 7, the slip speed becomes 
negative in the range F,./B”3 6 1. A negative and 
small U/(or) ratio means that the translational speed 
of the cylinder (or+ U) is slightly less than its 
peripheral speed (cm). 

One final observation concerns the two slenderness 
conditions (29) and (40), which must be respected 
as A-+ 1. In this limit these conditions produce two 
simpler inequalities 

B”‘<< V * << I. (52) 

In conclusion, the operating conditions represented 
by a point on the single curve of Fig. 6 must be such 
that V, and B are individually smaller than one and, 
in addition, B is smaller than V:. These conditions 
do not restrict the range of values that is allowed for 
the lone parameter Vi/B, with which one was able to 
describe the curve of Fig. 6. Equation (52) can easily 
be rewritten as 

V3 B’!z << ..? << B ’ 
B 

(53) 

to show that the group Vi/B is allowed to assume 
values that are smaller or greater than one (recall that 
B << 1). 

9. STATIONARY CYLINDER 

As a second problem consider the case of a cylinder 
the axis of which does not move along the flat heater. 
The cylinder rotates in place under the influence of 
F,, F, and M, while the melting process removes a 
steady film of liquid from the cylinder periphery. This 
problem is represented by the kinematic condition 
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FIG. 7. The slip speed between the bottom of the phase-change roller and the flat heater. 
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u(O) = 0, which means that U/(W) = - 1, or, in view 
of equation (5 1) 

o= -g. 
* 

(54) 

Educated by the asymptotic solution developed in 
the preceding section, one can invoke from the outset 
the limit 1+ 1. In this limit the general rotational 
equilibrium condition (34) reduces to 

-$4*iW($‘](~+;~‘. (55) 

It is worth noting that equation (44) is the special 
‘zero-moment’ limit of equation (55). Note further 
that the vertical and longitudinal force balances (45) 
and (46) apply unchanged to the present problem. 

The solution to the stationary cylinder problem can 
be obtained parametrically by combining equations 
(45), (46) and (55). The role of ‘parameter’ is played 
by the group Vi/B (or by 0, equation (54)). The 

results are presented in Figs. 8 and 9. Assuming that 
the temperature difference parameter B is fixed, from 
Fig. 8 one can learn that both the melting speed V, 
and the applied moment M, increase as the normal 
force increases. The behavior of M.+B’/3 at small 
values of the abscissa parameter F,. B *I3 is illustrated 
in Fig. 9. 

The tangential force Ft. exhibits a somewhat more 
interesting behavior (Figs. 8 and 9). It increases 
with the normal force only in the domain where the 
abscissa parameter F,,.B213 is greater than approxi- 
mately 0.5. Furthermore, there exists a critical con- 
dition represented by Vi/B = 0.625 or Fn.B213 = 3.3, 
where the tangential force is zero. In the ‘light pres- 
sure’ domain F,.B*” < 3.3 the tangential force is 
small and negative, meaning that the operator of the 
device must pull the cylinder in the negative x-direc- 
tion, while turning it clockwise and pressing it down- 
ward. 

The preceding results are based on the slenderness 
assumptions (29) and (40), which for the 1--r 1 limit 
have been summarized in expression (53). This 
expression and the Vi/B curve of Fig. 8 show that the 
domain of validity of the plotted results becomes in- 

10-2 10-l 1 10 102 103 

F,rB2/3 

FIG. 8. Solution for the rolling contact melting of a stationary cylinder. 
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o-‘/ Ft*Bj- 
10-z 10-i 1 

F,*Bz/s lo 
FIG. 9. The behavior of the solution of Fig. 8 in the limit of 

light pressures (small normal forces). 

creasingly wider as the temperature difference param- 
eter B decreases. 

10. CONCLUDING REMARKS 

The work assembled. in this paper consists of first 

developing a general theory for the rolling contact 
melting process (Sections 2-6) and later solving two 

specific problems, the freely spinning roller (Sections 
7 and 8) and the cylinder that rolls while standing 
still (Section 9). The solutions to these two problems 
demonstrated the usefulness and validity of invoking 
the limit 1-+ 1. In closing, it pays to take another look 

at the most general theory (Sections 2-6). 
In the 1+ 1 limit the general theory reduces to a 

set of three equations, equations (45) (46) and (55), 
with which one can calculate three groups, respec- 
tively, F,,JlZi3, F,.B’13 and M,B’i3. The equations 
show that each of these groups is a function of two 
parameters, namely, 0 and Vi/B. Eliminating i? 
between the three equations one can reduce the prob- 
lem to the calculation of two surfaces, one for the 

relationship between the mechanical loads 

IW,B”~ = f,(F,,.B2’3, F,.B”3) (56) 

and the other for the melting speed 

V3 
$ = f2(Fn.Bzi3, F,.B”3). 

These surfaces can be obtained numerically in the way 
in which one handled the special cases of Sections 8 
and 9. For example, the single curve of Fig. 6 is the 
projection on the base plane F,,eB213-F,eB’13 of the 
intersection between the plane IV,B”~ = 0 and the 
surface represented by equation (56). 

In conclusion, in the limit I + 1 the number of 
degrees of freedom of the problem decreases to two. 
Raised to the power l/3 or 2/3, the heat transfer 
parameter B participates only as a scaling factor in 
the construction of new dimensionless groups for the 

normal force, tangential force, applied torque and 
melting speed. 

Worth keeping in mind is that the slenderness cri- 
teria (53) identify the regions of surfaces (56) and (57) 
in which that solution is valid. The regions become 
increasingly wider as B becomes considerably smaller 

than one. It turns out, however, that the heat transfer 
parameter B cannot decrease indefinitely without 
threatening the foundations of the theory. This feature 
is due to the neglect of the effect of frictional heating 
in the liquid gap, equation (6), which is equivalent to 
assuming that po/(ph,,) < B. This limitation reveals 
another important heat transfer parameter of the 
rolling melting process 

B = !-?, 
m,n 

ph,, 
(58) 

Therefore, the present theory holds for the ‘sufficiently 
small’ viscosities recommended by Bmin < B. 

Implicit in this entire work is also the assumption 
that the elastic deformation of the heater material can 
be neglected in the description of the liquid gap shape. 
In accordance with the solution to the Hertz elastic 
contact problem [12], this assumption means that the 
modulus of elasticity of the heater material is greater 
than a certain order of magnitude. In general, the 
problem is ‘elasto-hydrodynamic’ [ 131 as the liquid 
gap shape is determined by the interplay between the 
melting and lubrication phenomenon analyzed in this 
paper and the solid deformation caused by surface 
pressure distributions such as those displayed in 
Fig. 3. 

Finally, it is worth noting two melting phenomena 
that are related to the one treated in this paper. The 
case w = 0 corresponds to the contact melting of a 
solid that slides along the heater surface. This par- 
ticular problem and the one in which the heating is 
provided by viscous effects in the liquid gap is 
described in a separate article [14]. The even more 
restricted case of no rotation (w = 0) and zero slip 
(U = 0) corresponds to the contact melting problem 
studied by Bareiss and Beer [15] and Webb et al. [ 161. 
These authors studied the melting of a block of ice 
that stagnates (pushes) against the upper boundary 
of a horizontal cylindrical capsule. 
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LE MECANISME DE FUSION PAR CONTACT FROTTANT 

R6sum&-On decrit les bases du mecanisme de fusion qui se produit dans la meme region de contact entre 
un corps a changement de phase et un solide qui agit comme chauffoir. La theorie est ba& sur les 
hypotheses suivantes : (i) le mat&au I changement de phase est a la temperature du point de fusion, (ii) 
la surface du solide est isotherme, (iii) l’effet du chauffage par frottement dans l’espace liquide est negli- 
geable, (iv) la longueur peripherique de la region liquide est plus petite que le rayon du rouleau, (v) 
l’epaisseur de la region liquide est mince et (vi) l’effet de la tension interfaciale est negligeable. La solution 
g&&ale construite de cette fa9on relie la charge mecanique du rouleau (forces normale et tangentielle, 
couple applique) a la vitesse angnlaire du rouleau, a la difference de temperature entre le chauffoir et le 
mat&au a changement de phase et aux proprietes thermophysiques de la phase liquide. Des procedures 
de calcul simples sont developpees pour deux applications speciales : (a) la fusion dun cylindre month libre 
sur son axe et (b) la fusion dun cylindre tournant dont l’axe est 8xe par rapport a la surface du chauffoir. 

EIN SCHMELZVERFAHREN MIT ROTIERENDER KONTAKTFLACHE 

Zusammenfassung-Diese Veriiffentlichung beschreibt die Grundlagen der Wiirmeiibertragung beim 
SchmelzprozeB in der schmalen rotierenden Kontaktschicht zwischen einem Kiirper mit Phasentibergang 
und einem beheizten Festkiirper. Die Theorie basiert auf den folgenden Annahmen: (i) das Material, 
welches den Phasenwechsel vollzieht, besitzt Schmelztemperatur, (ii) die gesamte Oberfliiche des Fest- 
stoffes hat eine einheitliche Temperatur, (iii) der Effekt der Reibungswarme in dem mit Fliissigkeit gefiill- 
ten Spalt ist vemachliissigbar, (iv) die tangentiale Ausdehnung der Fliissigkeitsschicht ist vie1 kleiner als 
der Radius des Rollkorpers, (v) die Fliissigkeitsschicht ist dtinn und (vi) der Effekt der Obertlachen- 
spammng ist vemachliissigbar. Die allgemeine Liisung des Problems beinhaltet den Zusammenhang der 
mechanischen Kriifte am Rollkiirper (Normalkraft, Tangentialkraft, aufgebrachtes Drehmoment), 
dessen Winkelgeschwindigkeit, der Temperaturdifferenz zwischen dem Heizer und dem Medium mit 
Phasenwechsel und den thermophysikalischen Eigenschaften der fliissigen Phase. Einfachere Berech- 
nungsmethoden werden fur zwei Anwendungen entwickelt : (a) Schmelzvorgang eines Zylinders, der frei 
auf seiner Achse montiert ist und (b) Schmelzen eines sich drehenden Zylinders, dessen Achse stationlr 

zur Heiztllche bleibt. 

l-IJlABJIEHHEHPHKOHTAKTEBHPOHECCEl-IPOKATKH 

Asmoxaqnn-PaccMarpnnarorca ocnonbr rerutonepenoca B nponecce nnaanemin npri nporarrce, nponc- 
XonatneM B ysaoii 06nacrn Kortratcra Mew TW~OM, @3OBOe COcroIIHHe KOTO~O~O H3MeAReTcq H 

TB~~DI?.I ~e~~o~,~lpa~Orrswr p0~1b HaqwnTenn. Teopna oc~o~bmae~c8 Ha cneLIylou@ix npennonoxe- 

nxx:(i)MaTepEan,@30Boe CocToIIHHe HOTOpOrO snMeHge-ws, Haxo~ca npa TeMnepaTyp2 nnanne- 

Hq(ii)noBepxHOcTb Teepnoro Tena ganxexz a30Teph5iwcrofi,(iii)~arpe.~ 3a cw~ ~pe~~a B xsr~mtofi 

npocnoiige npe~e6pex~Mo MUI, (iv) DJ-IEEI nepwwrpa XEAKO~ o6nacra HaMtloro MeHbLue pa,qqca 

pomura, (v) o6nacrb XWJKO~ npocnoiig~ TonIca a (vi) noBepluIocrHoe HanpareHae npeee6poxwro 

MEfJlO.~onpoeHAoeTBlCHMO6pa30M 06meepemewe ycTaAaBwBaeTCBlI3bMeEWMCXaAwecnoiHar- 

pJ'3KOtipOJSiKa(Ho&WJIbEG-UiE ICaCZITeJIbH~cOCTaBJE4EOlUHeciUIId,EIpyTSIl&8MOMeS?T)E yUIOBOfi CKO- 

POCTbH) ero BpanreHE% pa3HOCTbEO TeMnepayp MeXC,JIy HarpeBaTeJIeM H xiarpeBaehwhf BeIqeCrBOM, 

~en.1104~3~~ec~u~ CBO~~CTB~ME XE,JJKO# @SL Pa3pa60~a~1.1 6oonee npocrue n.wro~lb~ pacwra ma 

L(syx cny9aeB:(a)nnaBneHen wunnwpa, CBO~OJIEO sarpenne~oro Ha CBOeti OCE ~(6)nnaBneH~s spa- 
maromerocx mrmmnpa,OCbrtoroporonenonanxna OT~~OCHT~JI~HO~OB~XEI~H HaIJXBaTeJIs. 


